Trees, Forestry and Deforestation 5E

Take students outside to measure trees, discover ecosystem services of trees and forests, develop math skills, deforestation and sustainable forestry in the “I Love Trees 5E” Lab. If you are lucky enough to teach at a school next to a forested area, take the kids there. If not, trees on the school grounds, park or other area work just as well.

Student using a homemade clinometer to measure the height of a tree at school

Teacher Preparation

For this 5E, you need to make clinometers using cardboard, string/yard, a piece of metal (anything with a little weight) and a straw. You can have students make the clinometers if you would like, but I had my student lab assistant make 10 clinometers for me to save class time. They can be reused over and over. I made one clinometer for each group of 4 students.

Class set of clinometers that can be reused over and over

You also need two sewing tape-measures for each group of students and a tree map. I identified the trees ahead of time in the study area and googled their density. You could teach students how to identify trees using the iNaturalist app or a field guide if you want.

Materials for 1 group of students. One clinometer, two tape measures, and a tree map of the school grounds


An engage section of a 5E should be very short. For this 5E, I asked kids about the biggest tree they’ve ever seen. I find that personal questions where kids can share with their elbow partner and the rest of the class is very engaging. Another part of the Engage sections is review the photosynthesis equation–a good 5E builds on previous knowledge.

I show my own pictures with large trees (like Sequoias or Redwoods at the National Parks or large oak trees in town). Students like to see their teacher’s pictures.

This picture was taken 10 years ago in Sequoia National Park. My children are now older and one is in my APES class. Kids LOVE to see this.

Explore #1

Students head outside to take data in this Explore. Its helpful to demonstrate how to use the clinometer before heading outside. You or your students will choose a tree and measure the tree height using a homemade clinometer. They will also measure the tree circumference using the measuring tapes, the distance the tree to a building and the condition of the tree. After measurements, students will do math calculations using given formulas to help them determine the height, diameter, volume and mass (using the density), and the carbon sequestered by the tree.

Students hold the clinometer with the plumb line straight down and then walk forward or backwards until they can see through the straw to the top of the tree.
Students measure the circumference of the tree using measuring tapes and then use a formula to find the diameter.
Students use two measuring tapes to measure the distance from the tree to the student using the clinometer. The easiest way to do this is to “leapfrog” two tapes as shown above.

Explore #2

Students head back to class to enter their tree’s data on iTreeTools. 
Data chart for the results from iTree is below:

Total benefits for this year $
Carbon Dioxide Sequestered $
Annual CO2 equivalent of carbon kg
Storm Water runoff avoided $
Air Pollution Removed each year $
Carbon monoxide removed g
Ozone removed g
Nitrogen Dioxide removed g
Sulfur dioxide removed g
Particulate matter < 2.5 microns removed g
CO2 Stored to date $
Life CO2 equivalent of carbon kg

Explain: Student-Sense-Making

Students work through a series of questions to help them discover the scientific concept on their own. Sample questions:

  1. What are the $ benefits of your tree? _________________
  2. Review: What is the photosynthesis equation:
  3. Draw a picture of the tree and show how molecules are moving
  4. Where does the C from CO2 end up?
  5. Think about it: How does cutting down trees for lumber and paper affect atmospheric carbon?
  6. Think about it: How does cutting down trees and burning them affect atmospheric carbon?
  7. Many species of trees increase in density, as they get older. How does this affect carbon sequestration? (Hint, the mass increases also).
Sample drawing for #3 above. The idea is for students to understand that carbon creates biomass in trees and other producers.

These and other questions help students discover the scientific concept/s and make a CLAIM. This is the place for formative assessment. Walk around and check student claims. Make sure they understand what you want them to understand.

Question :: How can how trees provide ecosystem services regarding climate
change, air pollution and water pollution:
Claim :: (Complete sentence answer to the question above.—Make sure you write
about ALL THREE ecosystem services)    

Explain: New Understandings and Vocabulary

This is the place for formal science instruction. in this E, students will watch a series of 3 mini videos that describe more ecosystem services of trees and why tree-sitters do what they do. Students record more ecosystem services of trees on their lab report. Its best to do this portion as a class so that you can stop and discuss. However, it can be done at home, if needed, to save time. One video is a lovely TedTalk about trees.


In this section, students learn about deforestation and then sustainable forest solutions. Students will watch a series of 6 mini videos and fill in a T-chart with facts about deforestation and facts about sustainable forestry. Two sample videos are:

While there are some counter-arguments to sustainable forestry, students need to understand some solutions for exams. You can discuss places you agree or disagree with sustainable forestry.


The evaluate section of this 5E is unique, engaging and fairly easy to grade. Students will fill in the branches of the tree drawing with 5 ecosystem services:

Students then describe problems with deforestation next to the stump:

And methods of sustainable forestry next to this drawing:

The Evaluate section can be done individually or with a partner–with or without notes. You decide which is best for your students.

Open Access Picture credits: